> Q. 43. For hydrogen atom electron in $ {{text{n}}^{text{th}}} $ Bohr orbit, the ratio of radius of orbit to its de-Broglie wavelength is – LIVE ANSWER TODAY

Q. 43. For hydrogen atom electron in $ {{text{n}}^{text{th}}} $ Bohr orbit, the ratio of radius of orbit to its de-Broglie wavelength is

In This post you will get answer of Q.
43. For hydrogen atom electron in $ {{text{n}}^{text{th}}} $ Bohr orbit, the ratio of radius of orbit to its de-Broglie wavelength is

Solution:

For nth Bohr orbit, $ r=frac{{{varepsilon }_{0}}{{n}^{2}}{{h}^{2}}}{pi mZ{{e}^{2}}} $ de-Broglie wavelength $ lambda =frac{h}{mv} $ Ratio of both r and $ lambda $ , we have $ frac{r}{lambda }=frac{{{varepsilon }_{0}}{{n}^{2}}{{h}^{2}}}{pi mZ{{e}^{2}}}times frac{mv}{h} $ $ =frac{{{varepsilon }_{0}}{{n}^{2}}hv}{pi Z{{e}^{2}}} $ But $ v=frac{Z{{e}^{2}}}{2h{{varepsilon }_{0}}n} $ for nth orbit Hence, $ frac{r}{lambda }=frac{n}{2pi } $

Leave a Comment