> Q. A black body at $ 1227{}^circ C $ emits radiations with maximum intensity at a wavelength of $ 5000overset{text{o}}{mathop{text{A}}}, $ . If the temperature of the body is increased by $ 1000{}^circ C $ , the maximum intensity will be observed at – LIVE ANSWER TODAY

Q. A black body at $ 1227{}^circ C $ emits radiations with maximum intensity at a wavelength of $ 5000overset{text{o}}{mathop{text{A}}}, $ . If the temperature of the body is increased by $ 1000{}^circ C $ , the maximum intensity will be observed at

In This post you will get answer of Q.
A black body at $ 1227{}^circ C $ emits radiations with maximum intensity at a wavelength of $ 5000overset{text{o}}{mathop{text{A}}}, $ . If the temperature of the body is increased by $ 1000{}^circ C $ , the maximum intensity will be observed at

Solution:

According to Wiens law $ {{lambda }_{m}}T $ = constant (say b) where $ {{lambda }_{m}} $ is wavelength corresponding to maximum intensity of radiation and T is temperature of the body in Kelvin. $ therefore $ $ frac{lambda {{}_{m}}}{{{lambda }_{m}}}=frac{T}{T} $ Given, $ T=1227+273=1500K $ $ T=1227+1000+273=2500K $ $ {{lambda }_{m}}=5000overset{text{o}}{mathop{text{A}}}, $ Hence, $ lambda {{}_{m}}=frac{1500}{2500}times 5000=3000overset{text{o}}{mathop{text{A}}}, $

Leave a Comment