In This post you will get answer of Q.
A body cools from 50°C to 49°C in 5 seconds. How long will it take to cool from 40°C to 39°C? (Assume temperature of surrounding to be 30°C and Newton’s law of cooling is valid).
Solution:
According to Newton’s law of cooling
$ – frac{dtheta}{dt} = k [theta – theta_0]$
Here, $k$ is proportionality constant
$therefore , frac{50 – 49}{5} = k left[ frac{50 + 49}{2} – 30right]$
$frac{1}{5} = k left[ frac{99}{2} – 30 right]$
$frac{1}{5} = k left[ frac{39}{2} right] $
$ Rightarrow :: k frac{2 }{5 times 39}$
Now same body cool from $40°C$ to $39°C$.
$ frac{40 – 39}{t} = frac{2}{5 times 39} left[ frac{40+39}{2} – 30 right]$
$frac{1}{t} = frac{2}{5 times 39} left[ frac{19}{2} right]$
$Rightarrow ::: t = frac{5 times 39}{19} = 10.26 , s = 10.0 s $
Solution:
According to Newton’s law of cooling
$ – frac{dtheta}{dt} = k [theta – theta_0]$
Here, $k$ is proportionality constant
$therefore , frac{50 – 49}{5} = k left[ frac{50 + 49}{2} – 30right]$
$frac{1}{5} = k left[ frac{99}{2} – 30 right]$
$frac{1}{5} = k left[ frac{39}{2} right] $
$ Rightarrow :: k frac{2 }{5 times 39}$
Now same body cool from $40°C$ to $39°C$.
$ frac{40 – 39}{t} = frac{2}{5 times 39} left[ frac{40+39}{2} – 30 right]$
$frac{1}{t} = frac{2}{5 times 39} left[ frac{19}{2} right]$
$Rightarrow ::: t = frac{5 times 39}{19} = 10.26 , s = 10.0 s $