In This post you will get answer of Q.
A gaseous mixture consists of $16, g$ of helium and $16, g$ of oxygen. The ratio $frac{C_{p}}{C_{v}}$ of the mixture is :
Solution:
$C_{v}=frac{n_{1},C_{v_1}+n_{2},C_{v_2}}{n_{1}+n_{2}}$
For helium, $n_{1}=frac{16}{4}=4$ and $gamma_{1}=frac{5}{3}$
$n_{2}=frac{16}{32}=frac{1}{2} $ and $gamma _{2}=frac{7}{5}$
$C_{v_1}=frac{R}{gamma_{1}-1}$
$=frac{R}{frac{5}{3}-1}=frac{3}{2}R$
$C_{v_2}=frac{R}{gamma_{2}-1}=frac{R}{frac{7}{5}-1}=frac{5}{2}R$
$therefore C_{v}=frac{4timesfrac{3}{2}R+frac{1}{2}. frac{5}{2}R}{4+frac{1}{2}}$
$=frac{6,R+frac{5}{4}R}{frac{9}{2}}$
$=frac{29,Rtimes2}{9times4}=frac{29,R}{18}$
Now, $C_{v}=frac{R}{gamma-1}$
$Rightarrow gamma-1=frac{R}{C_{v}}$
$gamma =frac{R}{C_{v}}+1=frac{R}{frac{29}{18}R}+1$
$Rightarrow frac{C_{p}}{C_{v}}=frac{18}{29}+1$
$=frac{18+29}{29}=1.62$
Solution:
$C_{v}=frac{n_{1},C_{v_1}+n_{2},C_{v_2}}{n_{1}+n_{2}}$
For helium, $n_{1}=frac{16}{4}=4$ and $gamma_{1}=frac{5}{3}$
$n_{2}=frac{16}{32}=frac{1}{2} $ and $gamma _{2}=frac{7}{5}$
$C_{v_1}=frac{R}{gamma_{1}-1}$
$=frac{R}{frac{5}{3}-1}=frac{3}{2}R$
$C_{v_2}=frac{R}{gamma_{2}-1}=frac{R}{frac{7}{5}-1}=frac{5}{2}R$
$therefore C_{v}=frac{4timesfrac{3}{2}R+frac{1}{2}. frac{5}{2}R}{4+frac{1}{2}}$
$=frac{6,R+frac{5}{4}R}{frac{9}{2}}$
$=frac{29,Rtimes2}{9times4}=frac{29,R}{18}$
Now, $C_{v}=frac{R}{gamma-1}$
$Rightarrow gamma-1=frac{R}{C_{v}}$
$gamma =frac{R}{C_{v}}+1=frac{R}{frac{29}{18}R}+1$
$Rightarrow frac{C_{p}}{C_{v}}=frac{18}{29}+1$
$=frac{18+29}{29}=1.62$