In This post you will get answer of Q.
An object of density $2000 , k-gm^{-3}$ is hung from a thin light wire. The fundamental frequency of the transverse waves in the wire is $200, Hz$. If the object is immersed in water such that half of its volume is submerged, then the fundamental frequency of the transverse waves in the wire is
Solution:
Fundamental frequency, initially
$n_{1}=frac{1}{2 l} sqrt{frac{T}{mu}}=frac{1}{2 l} sqrt{frac{V g(2000)}{mu}}$
Fundamental frequency, finally
$n_{2}=frac{1}{2 l} sqrt{frac{operatorname{Vg}left(2000-frac{1000}{2}right)}{mu}}$
(here we applied loss of weight due to upthrust)
$=frac{1}{2 l} sqrt{frac{V g times 1500}{mu}}$
$Rightarrow frac{n_{1}}{n_{2}}=sqrt{frac{2000}{1500}}=sqrt{frac{4}{3}}$
$Rightarrow n_{2}=frac{n_{1} times sqrt{3}}{2}=100 sqrt{3}, Hz $
$=173.2, Hz$
Solution:
Fundamental frequency, initially
$n_{1}=frac{1}{2 l} sqrt{frac{T}{mu}}=frac{1}{2 l} sqrt{frac{V g(2000)}{mu}}$
Fundamental frequency, finally
$n_{2}=frac{1}{2 l} sqrt{frac{operatorname{Vg}left(2000-frac{1000}{2}right)}{mu}}$
(here we applied loss of weight due to upthrust)
$=frac{1}{2 l} sqrt{frac{V g times 1500}{mu}}$
$Rightarrow frac{n_{1}}{n_{2}}=sqrt{frac{2000}{1500}}=sqrt{frac{4}{3}}$
$Rightarrow n_{2}=frac{n_{1} times sqrt{3}}{2}=100 sqrt{3}, Hz $
$=173.2, Hz$