In This post you will get answer of Q.
Figure shows three resistor configurations $R_1, R_2 $ and $R_2 $ connected to $3, V$ battery.
If the power dissipated by the configuration $R_1, R_2 , and , R_3 , is , P_1, P_2 , and , P_3, $. respectively, then
Solution:
Applying $P = frac{V^2}{R}, R_1 = 1 Omega, R_2 = 0.5 Omega$ and $ R_3 = 2 Omega$
$ , , , , , , , , , , , , , V_1 = V_2 = V_3 = 3V$
$therefore , , , , , , , P_1 = frac{(3)^2}{1} = 9W$
$, , , , P_2 = frac{(3)^2}{0.5} = 18 W $ and $ P_3 = frac{(3)^2}{2} = 4.5W$
$ therefore , , , , , , P_2 > P_1 > P_3$
$therefore , $Correct option is (c).
Solution:
Applying $P = frac{V^2}{R}, R_1 = 1 Omega, R_2 = 0.5 Omega$ and $ R_3 = 2 Omega$
$ , , , , , , , , , , , , , V_1 = V_2 = V_3 = 3V$
$therefore , , , , , , , P_1 = frac{(3)^2}{1} = 9W$
$, , , , P_2 = frac{(3)^2}{0.5} = 18 W $ and $ P_3 = frac{(3)^2}{2} = 4.5W$
$ therefore , , , , , , P_2 > P_1 > P_3$
$therefore , $Correct option is (c).