> Q. Match Column I with Column II. For a satellite in circular orbit, Column I Column I (A) Kinetic energy (p) $-frac{GM_Em}{2r}$ (B) Potential energy (q) $sqrt{frac{GM_E}{r}}$ (C) Total energy (r) $-frac{GM_Em}{r}$ (D) Orbital velocity (s) $frac{GM_Em}{2r}$ (where $M_E$ is the mass of the earth, $m$ is mass of the satellite and $r$ is the radius of the orbit) – LIVE ANSWER TODAY

Q. Match Column I with Column II. For a satellite in circular orbit, Column I Column I (A) Kinetic energy (p) $-frac{GM_Em}{2r}$ (B) Potential energy (q) $sqrt{frac{GM_E}{r}}$ (C) Total energy (r) $-frac{GM_Em}{r}$ (D) Orbital velocity (s) $frac{GM_Em}{2r}$ (where $M_E$ is the mass of the earth, $m$ is mass of the satellite and $r$ is the radius of the orbit)

In This post you will get answer of Q.
Match Column I with Column II.
For a satellite in circular orbit,
Column I
Column I
(A)
Kinetic energy
(p)
$-frac{GM_Em}{2r}$
(B)
Potential energy
(q)
$sqrt{frac{GM_E}{r}}$
(C)
Total energy
(r)
$-frac{GM_Em}{r}$
(D)
Orbital velocity
(s)
$frac{GM_Em}{2r}$

(where $M_E$ is the mass of the earth, $m$ is mass of the satellite and $r$ is the radius of the orbit)

Solution:

Kinetic energy $= frac{GM_{E}m}{2r}; A-s$

Potential energy $= frac{GM_{E}m}{r}; B-r$

Total energy $=frac{GM_{E}m}{2r}; C-p$

Orbital velocity $= sqrt{frac{GM_{E}}{r}}; D-q$

Leave a Comment