## In This post you will get answer of Q.

Match Column I with Column II.

For a satellite in circular orbit,

Column I

Column I

(A)

Kinetic energy

(p)

$-frac{GM_Em}{2r}$

(B)

Potential energy

(q)

$sqrt{frac{GM_E}{r}}$

(C)

Total energy

(r)

$-frac{GM_Em}{r}$

(D)

Orbital velocity

(s)

$frac{GM_Em}{2r}$

(where $M_E$ is the mass of the earth, $m$ is mass of the satellite and $r$ is the radius of the orbit)

Solution:

## Kinetic energy $= frac{GM_{E}m}{2r}; A-s$

Potential energy $= frac{GM_{E}m}{r}; B-r$

Total energy $=frac{GM_{E}m}{2r}; C-p$

Orbital velocity $= sqrt{frac{GM_{E}}{r}}; D-q$