In This post you will get answer of Q.
$[ML^{3}T^{-3}A^{-2}]$ is the dimensional formula of
Solution:
Resistances $=frac{text{Potential difference}}{text{Current}}$
$=frac{left[ML^{2}T^{-3}A^{-1}right]}{left[Aright]}=left[ML^{2}T^{-3}A^{-2}right]$
Resistivity $=frac{text{Resistance $times$ Area}}{text{Length}}$
$=frac{left[ML^{2}T^{-3}A^{-2}left[L^{2}right]right]}{left[Lright]}=left[ML^{3}T^{-3}A^{-2}right]$
Conductance $=frac{1}{text{Resistivity}}=left[M^{-1}L^{-3}T^{3}A^{2}right]$
$therefore left[ML^{3}T^{-3}A^{-2}right]$ is the dimensional formula of resistivity.
Solution:
Resistances $=frac{text{Potential difference}}{text{Current}}$
$=frac{left[ML^{2}T^{-3}A^{-1}right]}{left[Aright]}=left[ML^{2}T^{-3}A^{-2}right]$
Resistivity $=frac{text{Resistance $times$ Area}}{text{Length}}$
$=frac{left[ML^{2}T^{-3}A^{-2}left[L^{2}right]right]}{left[Lright]}=left[ML^{3}T^{-3}A^{-2}right]$
Conductance $=frac{1}{text{Resistivity}}=left[M^{-1}L^{-3}T^{3}A^{2}right]$
$therefore left[ML^{3}T^{-3}A^{-2}right]$ is the dimensional formula of resistivity.