> Q. The quantities $x=frac{1}{sqrt{mu_{0} epsilon_{0}}}, y=frac{E}{B}$ and $z =frac{1}{ CR }$ are defined where C – capacitance R – Resistance, l – length, E – Electric field, B – magnetic field and $epsilon_{0}, mu_{0},$ – free space permittivity and permeability respectively. Then : – LIVE ANSWER TODAY

Q. The quantities $x=frac{1}{sqrt{mu_{0} epsilon_{0}}}, y=frac{E}{B}$ and $z =frac{1}{ CR }$ are defined where C – capacitance R – Resistance, l – length, E – Electric field, B – magnetic field and $epsilon_{0}, mu_{0},$ – free space permittivity and permeability respectively. Then :

In This post you will get answer of Q.
The quantities $x=frac{1}{sqrt{mu_{0} epsilon_{0}}}, y=frac{E}{B}$ and $z =frac{1}{ CR }$ are defined where C – capacitance
R – Resistance, l – length, E – Electric field, B – magnetic field and $epsilon_{0}, mu_{0},$ – free space permittivity and permeability respectively. Then :

Solution:

$x =frac{1}{sqrt{mu_{0} varepsilon_{0}}}=$ speed

$Rightarrow[ x ]=left[ L ^{1} T ^{-1}right]$

$y =frac{ E }{ B }=$ speed

$Rightarrow[ y ]=left[ L ^{1} T ^{-1}right]$

$z =frac{ell}{ RC }=frac{ell}{tau} $

$Rightarrow[ z ]=left[ L ^{1} T ^{-1}right]$

So, $x, y, z$ all have the same dimensions.

Leave a Comment