In This post you will get answer of Q.
The ratio of the volume of the atom to the volume of the nucleus is of the order of
Solution:
Radius of the atom, $R_{a}=1,Å=10^{-10},m$
Volume of the atom, $V_{a}=frac{4}{3} pi R^{3}_{a}=frac{4}{3}timespitimesleft(10^{-10}right)^{3},m^{3}$
Radius of the nucleus, $R_n=1$ fermi $=10^{-15},m$
Volume of the nucleus, $V_{n}=frac{4}{3} pi R^{3}_{n}=frac{4}{3}timespitimesleft(10^{-15}right)^3,m^{3}$
Their corresponding ratio is
$frac{V_{a}}{V_{n}}=frac{left(10^{-10}right)^{3}}{left(10^{-15}right)^{3}}=frac{10^{-30}}{10^{-45}}=10^{15}$
Solution:
Radius of the atom, $R_{a}=1,Å=10^{-10},m$
Volume of the atom, $V_{a}=frac{4}{3} pi R^{3}_{a}=frac{4}{3}timespitimesleft(10^{-10}right)^{3},m^{3}$
Radius of the nucleus, $R_n=1$ fermi $=10^{-15},m$
Volume of the nucleus, $V_{n}=frac{4}{3} pi R^{3}_{n}=frac{4}{3}timespitimesleft(10^{-15}right)^3,m^{3}$
Their corresponding ratio is
$frac{V_{a}}{V_{n}}=frac{left(10^{-10}right)^{3}}{left(10^{-15}right)^{3}}=frac{10^{-30}}{10^{-45}}=10^{15}$