## In This post you will get answer of Q.

The shown p- V diagram represents the thermodynamic cycle of an engine, operating with an ideal monoatomic gas. The amount of heat, extracted from the source in a single cycle is

Solution:

## Heat is extracted from the source means heat is given to the system (or gas) or Q is positive. This is positive only along the path ABC.

Heat supplied

$therefore , , , , Q_{ABC}+W_{ABC}$

$ , , , , , , , , , , , =nC_v(T_f -T_i)+$ Area under p-V graph

$ , , , , , , , , , , , =nbigg(frac{3}{2}Rbigg)(T_C-T_{A})+2p_0v_0$

$ , , , , , , , , , , =frac{3}{2}(nRT_C-nRT_A)+2p_0v_0$

$ , , , , , , , , , , =frac{3}{2} (p_C V_C-p_A V_A)+2p_0V_0$

$ , , , , , , , , , , =frac{3}{2} (4p_0V_0-p_0V_0)+2p_0V_0$

$ , , , , , , , , , , =bigg(frac{13}{2}bigg)p_0V_0$