In This post you will get answer of Q.
Two batteries of emf $varepsilon_{1}$ and $varepsilon_{2}left(varepsilon_{2}>varepsilon_{1}right)$i) and internal resistances $r_1$ and $r_2$ respectively are connected in parallel as shown in figure
Solution:
A. The equivalent emf $varepsilon_{ eq }$ of the two cells is between $varepsilon_{1}$ and $varepsilon_{2}$,
i.e., $varepsilon_{1}
The cells of emf $varepsilon_{1}$ and $varepsilon_{2}$ with internal resistance $r_{1}$ and $r_{2}$ respectively.
In parallel combination,
the relation between equivalent emf and equivalent resistance is,
$frac{varepsilon_{ eq }}{ r _{ eq }}=frac{varepsilon_{1}}{ r _{1}}+frac{varepsilon_{2}}{ r _{2}}$
The resistance in parallel combination is,
$r _{ eq }=frac{ r _{1} cdot r _{2}}{ r _{1}+ r _{2}}$
From the above equation,
$varepsilon_{ eq }=frac{varepsilon_{1} r _{2}+varepsilon_{2} r _{1}}{ r _{1}+ r _{2}}$
In question,
$varepsilon_{2}>varepsilon_{1}$
Then The equivalent emf $varepsilon_{ eq }$ of two cell is between $varepsilon_{1}$ and $varepsilon_{2}$.
Solution:
A. The equivalent emf $varepsilon_{ eq }$ of the two cells is between $varepsilon_{1}$ and $varepsilon_{2}$,
i.e., $varepsilon_{1}
The cells of emf $varepsilon_{1}$ and $varepsilon_{2}$ with internal resistance $r_{1}$ and $r_{2}$ respectively.
In parallel combination,
the relation between equivalent emf and equivalent resistance is,
$frac{varepsilon_{ eq }}{ r _{ eq }}=frac{varepsilon_{1}}{ r _{1}}+frac{varepsilon_{2}}{ r _{2}}$
The resistance in parallel combination is,
$r _{ eq }=frac{ r _{1} cdot r _{2}}{ r _{1}+ r _{2}}$
From the above equation,
$varepsilon_{ eq }=frac{varepsilon_{1} r _{2}+varepsilon_{2} r _{1}}{ r _{1}+ r _{2}}$
In question,
$varepsilon_{2}>varepsilon_{1}$
Then The equivalent emf $varepsilon_{ eq }$ of two cell is between $varepsilon_{1}$ and $varepsilon_{2}$.