In This post you will get answer of Q.
Two spherical black bodies of radii $r_1$ and $r_2$ at temperatures $T_1$ and $T_2$ respectively, radiate same power. Then $frac{r_1}{ r_2}$ must be equal to
Solution:
Power radiated from black body is given by,
$E = frac{dQ}{dt} = sigma AT^{4} $
So, $frac{E_{1}}{E_{2}} = frac{A_{1}}{A_{2}} timesfrac{T_{1^{4}}}{T_{2^{4}}} = frac{r_{1^{2}}}{r_{2^{2}}} times frac{T_{1^{4}}}{T_{2^{4}}}$
Here , $E_{1} = E_{2}$
$therefore , , , 1 = frac{r_{1^{2}}}{r_{2^{2}}} times frac{T_{1^{4}}}{T_{2^{4}}} $ or $frac{r_{1}}{r_{2}} left(frac{T_{1}}{T_{2}}right)$
Solution:
Power radiated from black body is given by,
$E = frac{dQ}{dt} = sigma AT^{4} $
So, $frac{E_{1}}{E_{2}} = frac{A_{1}}{A_{2}} timesfrac{T_{1^{4}}}{T_{2^{4}}} = frac{r_{1^{2}}}{r_{2^{2}}} times frac{T_{1^{4}}}{T_{2^{4}}}$
Here , $E_{1} = E_{2}$
$therefore , , , 1 = frac{r_{1^{2}}}{r_{2^{2}}} times frac{T_{1^{4}}}{T_{2^{4}}} $ or $frac{r_{1}}{r_{2}} left(frac{T_{1}}{T_{2}}right)$